Posts

Mappt User Story: Researching primitive termite species in outback Australia

We caught up with Nicholas Hart at our offices in Perth this week. Nicholas was the 2017 winner of the “Takor Group prize for GIS” at the University of Western Australia.

Nicholas continued his studies at UWA in the School of Biological Sciences and recently submitted his thesis focusing on  primitive termite species in Australia.

Termites collected from a fallen tree

Termites collected from a fallen tree

We got the lowdown on the objectives of his thesis and how Mappt helped with the extensive field work involved in his research.

Mappt: G’day Nick. So tell us a bit about what you have been doing this past year….

After completing my degree in 2017, I decided to stay at UWA to pursue an Honours degree. The subject that I chose for my thesis was “Population and Landscape Genetics of a Primitive Termite Species” which was something my tutor had some experience with from research he had done decades ago so there was existing data on a broad and fine scale. The goal of my study was to relate genetic patterns in termite populations to spatial patterns in the landscape. In an ancient land like Australia, the landscape is stable so there is a lot of time for genetic patterns to emerge between populations. Extensive field research in 3 disparate outback locations was required so that was another thing that attracted me to the subject.

What locations did you visit for research? I am picturing wide open barren plains – how do you locate a tiny creature like a termite in such a vast landscape?

I spent time in the Pilbara region in Western Australia as well as areas around Darwin and Alice Springs in the Northern Territory. So yes – difficult places to find little insects but once you get used to the landscape and know what to look for, it actually becomes surprisingly easy to pick out the termite colonies – even at distance.

A screenshot from Mappt showing geotagged photos from study sites around Darwin in the Northern Territory, Australia

A screenshot from Mappt showing geotagged photos from study sites around Darwin in the Northern Territory, Australia

Why did you need to use GIS?

GIS was important as each data point has genetic information and it all had to be related to landscape features.

What type of landscape features are we talking about?

I needed to look at termite populations that were genetically distinct and see if there was a landscape feature separating the populations. Examples of landscape features are elevated areas which would have acted as refuges during ancient sea-level rises, big rivers with floodplains or even deep cracking clay soils.

So basically anything that would have separated one termite population from another for varying periods of time?

Correct. I found that the scale of the genetic patterns was related to the scale of the landscape variables that defined them.

Overview of some termite populations (yellow icons) separated by a landscape feature (in red)

Overview of some termite populations (yellow icons) separated by a landscape feature (in red)

Why did you need Mappt?

I needed something to assist with the collection of samples in the offline environment. I wanted something that would be an alternative to pen & paper, and swapping between a hand-held GPS and a digital camera. Mappt facilitated all of this in one device.

We often get asked about hardware so I’d be interested to hear what device were you using.

I used my HTC One Android smartphone.

So a pretty small screen then?

Yes but I found it usable for my purposes.

What Mappt features did you find most useful in the field?

I used the GPS tracking tool for orientation & navigation around the study sites. I created custom forms for collecting attribute data at each study site. I had some reference spatial data for some of the study sites which I loaded in to Mappt. I also captured a lot of spatial data – mostly as points – and took a lot of geotagged photos. Keeping a photographic record of the study site was important for investigating how the disturbance of the habitat affected the population and to relate the fine-level data collection with the broad-scale landscape features and thus identify populations for comparison. All the spatial data was exported to shapefile and I conducted analysis on the data using QGIS and R in the office.

A termite-infested tree in Western Australia

A termite-infested tree in Western Australia

Summing up then – would you recommend Mappt to others?

Yes definitely. For zoological and botanical field work, it is a definite advantage. There is less equipment and “stuff” to carry.  Everything is stored together – spatial points, geotagged photos, attributes, navigation & orientation – so there is less administration whilst at the study site. When it comes to planning, it is a definite time-saver and I also found it was easier to adapt with Mappt to changing conditions when in the field.

A custom data collection form template for the termite population study

A custom data collection form template for the termite population study

That’s great feedback. So what’s next for you?

Well I submitted my thesis this week. Yesterday, in fact. It’s been pretty hectic to get to this point so I am looking forward to a break. But there is plenty of potential for further work in this area so I am considering more academia in the future. But first a break.

Thank you for your time, Nick and all the best in the future.

by Ciaran Doyle

Mappt is a mobile GIS and data collection app for smartphones and tablets. It enables field operators to easily map and capture data offline in remote areas using their GPS-enabled tablet or mobile phone.

Try Mappt today by downloading it from the Google Play Store or Apple App Store

 

, ,

1m Positional Accuracy in Mappt using Bad Elf GNSS Surveyor

Bad Elf GNSS Surveyor & Mappt Mobile GIS

Measuring 60x100mm the Bad Elf GNSS Surveyor can provide 1m accuracy

Measuring 60x100mm the Bad Elf GNSS Surveyor can provide 1m accuracy

Thanks to the helpful folks at Bad Elf, we recently got our hands on the Bad Elf Surveyor Bluetooth GNSS* for testing with Mappt. Combining Mappt with an external source of positional information delivers higher  accuracy than using the on-board GNSS for mobile phones and tablets. It also reduces battery consumption and CPU load on your mobile device.

Vendors like Bad Elf also provide applications offering enhanced functionality for data logging, device configuration, and data QC. Using external GNSS sources makes determining your position less “black box” and more hands-on when it comes to resolving your location and understanding the level of accuracy provided.
Compact and Compatible
Paring the Bad Elf GNSS with Mappt follows the same procedure we’ve detailed in a previous blog. The compact design (100x 60x20mm) and long lasting battery make the Bad Elf a handy field companion for mobile mapping and data collection. With a small LCD screen yielding important GNSS information, the Bad Elf keeps you well aware of the positional information available to you.

GNSS information available from the Bad Elf's compact 35x25mm LCD screen

GNSS information available from the Bad Elf’s compact 35x25mm LCD screen

Increased Accuracy
When either mapping or collecting data in the field, increased positional accuracy is always a plus. Often it’s necessary to revisit the field to account for seasonal changes (in the case of environmental sciences) or for relocating benchmarks or critical infrastructure such as utilities. The Bad Elf Surveyor offers up to 1m accuracy, an improvement over the 3-5m accuracy achievable with tablets and mobile phones.

 

How does it do that?
The Bad Elf Surveyor uses information from three satellite constellations; GPS, GLONASS, and QZSS. Thus from wherever you are globally, there’s an increased probability that you will have the required four satellites to resolve your position. Many devices derive location from a single satellite constellation thus limiting the amount of satellites available to them. The Bad Elf Surveyor also implements SBAS, Satellite Based Augmentation System, to gain positions within 1m. Serving as an augmentation to Global Navigation Satellite Systems, it works by collecting raw positioning data from regional Continuously Operating Reference Stations (CORS), computing error corrections, and sharing these corrections to users via a geostationary communications satellite. While southern hemisphere regions don’t have their own SBAS, Australia is currently implementing its own SBAS test-bed to be operational by January 2019.
Alongside SBAS, the Bad Elf Surveyor also implements PPP, Precise Point Positioning, which removes GNSS system errors providing a high level of position accuracy from a single receiver. This solution depends on GNSS satellite clock and orbit corrections. These corrections are delivered to the receiver via satellite to provide positioning accurate to within several deicmetres.

 

Mobile Device GPS Behavior Versus Dedicated GPS Units
Mobile device GNSS chipsets have been designed to compliment an integrated system (your tablet/phone) delivering a wide variety of applications. Just count the number of apps you’ve downloaded from the app store. Can you imagine carrying a separate component for each of these?  These mobile applications are optimized to reduce load on the system by reducing battery consumption and processor load. The optimisation for mobile GPS chipsets puts limiting battery usage at the top of the list with time-to-fix location second and positional accuracy third. Dedicated GNSS devices like Bad Elf devices flip this priority on it’s head, placing positional accuracy first followed by time-to-fix and lastly the reduction of battery power. While it may seem like the Bad Elf would quickly run out of juice, it can continuously stream Bluetooth GNSS information for 24 hours. We have yet to see a tablet with that type of battery power!

We took the Bad Elf GNSS Surveyor to our favourite bushland, Signal Hill Park

We took the Bad Elf GNSS Surveyor to our favourite bushland, Signal Hill Park

Mapping Tips n Tricks Learned Using the Bad Elf Surveyor
Creating Polygons in Mappt –  Turn on the enter polygon tool and record each significant point of the polygon (corners and inflection points) as you walk out the perimiter. This ensures that corners/vertices are not shortcut and an accurate shape of the area is recorded.  It’s possible to create polygons in Mappt using the GPS Tracking tool, then walking out the perimeter of the polygon, and finishing off by converting the polyline to a polygon to enclose the area. This method helps when moving continuously (such as when in a vehicle) as you don’t need to stop and record points around the area. However the points associated with your polyline are created at the frequency of GPS updates from your device and you may end up not recording those key corner points!
GNSS Location – Place your external GNSS device in a way that provides a clear view of the sky. Some websites suggest affixing the GNSS face-up to the top of your hat! While you will have great reception, this limits the opportunity to check parameters on the LCD screen. Affixing the GNSS to a surveyors staff gives you both a walking stick and place to mount your tablet. This setup affords both good GNSS reception and makes data entry easier as the tablet is held steady by the staff.  Note:  The team at Bad Elf are currently developing hardware designed with rapid mobile mapping in mind.

The crew at Bad Elf are working on a clever monopole mount for the Bad Elf Surveyor

The crew at Bad Elf are working on a clever monopole mount for the Bad Elf Surveyor

Bad Elf has developed an integrated GPS and mobile device monopole for rapid mobile mapping

Bad Elf has developed an integrated GPS and mobile device monopole for rapid mobile mapping

Bad Elf GNSS Logging – The Bad Elf allows continuous logging of points. After a hard day in the field, it’s nice to know how much ground you covered. Logged information can be downloaded as GPX files and visualised in desktop GIS solutions such as QGIS.

Signal Hill Park Map from QGIS. Bad Elf track points (orange) displaying the total ground covered in this mapping exercise.

Signal Hill Park Map from QGIS. Bad Elf track points (orange) displaying the total ground covered in this mapping exercise.

*GNSS, Global Navigation Satellite System, is the collective term for all navigation satellites groups (constellations) including GPS.

 

If you would like to know more about configuring an external GNSS to work with Mappt, please contacts us at: support@mappt.com.au

Mappt User Story: Measuring Ecological & Economic Effectiveness of Restoration Actions

Judith Fisher is an ecologist in Western Australia and an Elected Member of the IPBES Multidisciplinary Expert Panel Intergovernmental Platform on Biodiversity and Ecosystem Services.

Judith exemplifies the “think global, act local” belief.

Judith Fisher, an acclaimed ecologist and Mappt power user

Judith Fisher, an acclaimed ecologist and Mappt power user

She has spent countless days over the past 10 months documenting & mapping baseline information on plant communities and invasive species in an urban nature reserve close to her home. Trigg Bushland is an “A Class” reserve located approximately 11km north-west of the Perth CBD in Western Australia and is roughly 170 hectares in size.

Judith has developed a method for measuring the ecological and economic effectiveness of the restoration actions which have taken place within the reserve.

But first she must establish a baseline. After much searching on the market for a suitable mobile data collection app to help her in the field, Judith discovered Mappt. She has configured a custom data collection form in Mappt that allows her to map out the boundaries of individual map communities within the reserve and document the native & invasive species within each community. She uses a Samsung 10″ tablet and a copy of Mappt Professional to record the spatial and non-spatial data. The data is exported at regular intervals off the tablet and analysed using desktop GIS.

Plant communities in the Trigg Busland

Plant communities in the Trigg Busland

The City of Stirling (where Trigg Reserve is located) and City of Mandurah (100km south of Perth) have already adopted Judith’s methodology. But it won’t end there – Judith’s past experience with the International Union for the Conservation of Nature (IUCN) and her current work with the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has lead her to believe that this methodology can be applied around the world.

We met up with Judith one VERY windy day in Trigg Bushland Reserve to hear more about her work and experiences using Mappt in the field.

Check out our video interview here – https://youtu.be/m28liqaFt24

(Apologies in advance for the audio quality. Did I mention it was very windy…?)

Connect with Judith on LinkedIn

PS: If you enjoyed the aerial drone shots of Trigg in the video , check out this video for some bonus footage: https://youtu.be/2hL4SfY_VeY

, , ,

External GPS sources for Mappt Part 2: Mapping in the Field with RTK GNSS (survey-grade GPS)

In our last post we covered how to configure your tablet or phone to receive an external GPS signal via Bluetooth.  Here we share our experience of linking up Mappt with survey-grade RTK GNSS (Real Time Kinematic Global Navigation Satellite System) to achieve centimetre-level positional accuracy.

 

Utilising RTK GNSS and Mappt for centimetre-level positional accuracy

Utilising RTK GNSS and Mappt for centimetre-level positional accuracy

Achieving Survey-Grade Positional Accuracy with Mappt

Joe user asks, “Hey how can I achieve high positional accuracy with Mappt?

The short answer is, “Bluetooth to an RTK GNSS to achieve centimetre level accuracy“.

What’s GNSS?

GNSS, is the collective term for all satellite positioning systems which includes GPS (USA), BeiDou (China), GLONASS (Russia), Galileo (Europe), IRNSS (India), and QZSS (Japan).  Phones, tablets, and survey-grade systems use satellites from multiple positioning systems, thus we’re referring to these systems as GNSS (rather than GPS).

The Benefits of Using Mappt in conjunction with RTK GNSS

Mappt’s flexibility and onboard functionality helps users achieve the full benefits of high accuracy RTK GNSS while in the field.  For example when using Mappt in conjunction with RTK GNSS, users have in-field access to these mapping tools;

  • Locate and save point features with unlimited attributes
  • Thematic Mapping gives users the ability to colour code mapped information while in the field
  • Layering of data types to achieve hierarchal data structure and visualisation
  • Interactive functionality (exclusion & inclusion zone warnings) improving field safety
  • The ability to display web-based aerial/satellite imagery and other GIS information such as WMS, WMTS, & WFS
    • With a data connection, this data is continuously updated as you move to new areas
  • Offline display of high resolution aerial and satellite images (ECW, JP2)
  • Multi-user data capture & updates using MapptAir.

RTK GNSS Gear

In our previous post we detailed how to configure your mobile device to receive location information via Bluetooth.  Thanks to Mangoesmapping and Ascon Surveys both for their technical support and equipment (on loan) used to complete our trial.  We found the Emlid Reach RS RTK GNSS units (available from Mangoesmapping) suitable for this trial.

Our Field Experience

The following data was acquired in less than one hour (including setup and pack down of the RTK base unit and survey pole mounted rover unit).  Data collection in this small urban bushland was on-the-fly as point types were added as deemed necessary.  Points types collected included kerb locations, footpath limits and walking tracks.  Point types were added to our field form as necessary thus the list of point types was added to as new elements were observed.  *To save time, a dropdown list of point ID’s can be created prior to leaving for the site.  In the limited time spent onsite, three point IDs were all that was necessary.  We also utilised the geotracking utility to map in the trails crossing the site as well as to create a geofenced area at the park’s centre.  Lastly we tested Mappt’s geofence alerts feature by entering and exiting our geofenced area.  Have a look at this video showing how it works.

Mappt mobile GIS data gathering using RTK GNSS at Signal Hill, Belmont, WA

Mappt mobile GIS data gathering using RTK GNSS at Signal Hill, Belmont, WA

What we took away from the experience.

It was a simple step to download all data gathered to shape files and import them into QGIS.  We mapped in such features as the back of kerb, footpath limits, and bush tracks.  RTK GNSS units have the ability to validate/qualify positional information with an audible “Fixed” to indicate that positional information is within your specified accuracy.  Likewise when the positional information is below spec an audio warning “Float” will alert users that possibly more time at that location is needed to gain a fixed position or that trees or buildings are hampering satellite reception.  Our recommendation is to have this activated on your RTK GNSS receivers to eliminate collecting data of low positional uncertainty (occurs in areas of high tree cover and when adjacent to tall buildings) .

QGIS map showing GIS data gathered using RTK GNSS and Mappt

QGIS map showing GIS data gathered using RTK GNSS and Mappt

,

External GPS sources for Mappt. Part 1: Configuration

gis_manAre you looking to improve your positional accuracy in Mappt?  

Connecting to an external Bluetooth GPS can help!

We’re often asked about improving the positional accuracy information used by Mappt.  As you may know, Mappt uses the onboard GPS from your mobile phone/tablet.  While the on-board GPS accuracy may be sufficient for some types of mapping, others require higher accuracy.  To achieve this Mappt can utilise an external Bluetooth GPS feed.  GPS devices capable of streaming positional information via Bluetooth in the NMEA format are suitable for Mappt.

As phones and tablets are designed to utilise their own integral GPS hardware, Mappt users will need to utilise a third-party application to incorporate an external Bluetooth GPS feed.  These external Bluetooth GPS streams serve to oreplace the internal GPS service to thus provide higher positional accuracy.  Android refers to these apps as Mock Location Providers since app developers often need a GPS feed for coding and testing.  One Bluetooth streaming app compatible with Mappt is Bluetooth GPS (on Google Play).

bluetooth-gps

Bluetooth GPS is available on the Google Play Store

After installing Bluetooth GPS it’s necessary to enable Developer Options, accessed via the Settings on your device.  Developer Options can be enabled by first finding the Build Number (for our device* it’s under Settings-About Tablet-Software Information) and tapping Build Number seven times.  A notification will appear to inform you that Developer Options have been enabled.  Afterwards in Developer Options (Settings-Developer Options-Debugging), users need to select Bluetooth GPS as the Mock Location Provider.

Link to Youtube Video: Settings to Enable Bluetooth

Settings to Enable Bluetooth GPS for Mappt

Then connect to the external device via Bluetooth and start Bluetooth GPS on the tablet.  From the Select Paired GPS device and connect list, choose the device and tap CONNECT.  The screen will be updated with new location parameters.  You’re now receiving location information via Bluetooth! Check out this video showing how to enable an external Bluetooth GPS for Mappt

* The configuration can vary depending on your tablet or phone.

 

 

 

,

Takor On Tour in SW Australia

b9f9eb13-ed48-47d2-832e-7440c5f60f86

Last week, Takor headed off-site to take the development team away from daily distractions and spend an intensive few days focused on building for the next phase of the company.

The location was the picturesque Margaret River region south of Perth, Western Australia.

While in the area, we dropped in to see some of our existing Mappt customers – and also spread the word to some new potential customers.

To the Mapptmobile……

mapptmobile

City of Mandurah and City of Busselton

First up was a visit to long-time supporters of Mappt at City of Mandurah where Mappt has been used by the Works & Services team for a while now. We also got some time with members of the environmental services team who are new users of the application. Great to meet Peter, Rebecca & Eryn.

Heading further south, we dropped in to the new City of Busselton offices. Unfortunately, out tour photographer was not on his game and the only record of our visits thus far was a photo of an ablution block and a photo of the person taking a photo …….of the ablution block. Sorry James & Dan – but great to meet you both.

ablutionblock south-west-geotagged-photo

Shire of Donnybrook-Balingup

With a new photographer assigned, the tour continued to the Shire of Donnybrook-Balingup – famous for its forests, vineyards and orchards. We met up with Damien at the shire offices in the town of Donnybrook where we discussed the potential use of Mappt to conduct road surveys and audits.

donnybrook

Premier Coal

Located close to the town of Collie, Premier Coal is Western Australia’s largest coal producer – mining about 4 million tonnes per year and employing 400 people in the local community. Here we met Colm and Julie from the environmental team and discussed how Mappt could help in daily activities around the vast operations site. We also introduced our  data synchronization platform Mappt Air and discussed how it could help mobilize field data collection teams quickly and reliably.

premier

South32 – Worsley Alumina

One of the largest and lowest-cost alumina producers in the world is located in south-west Australia. As part of the Worsley Alumina operations, bauxite is mined near the town of Boddington, 130 kilometres (kms) south east of Perth. It is then transported on the largest overland conveyor belt in the southern hemisphere, for more than 50 kms, to a refinery near the town of Collie, where a 100-year-old process is used to turn the red bauxite rock into white alumina powder before being transported by rail to Bunbury Port and shipped to smelters around the world.

During our visit to the Worsley refinery site near Collie, we met with Michael and Claire from the business improvement team who gave us a good feel for the scale of the operations. Unfortunately we were unable to get to see the operations for ourselves as being a bunch of city-slickers, we all turned up in short-sleeved shirts – unaware that the operation site is a strict long-sleeved shirt only area. It certainly impressed upon us how seriously health and safety for on-site workers is taken at Worsley Alumina. Despite being confined to the meeting room, we had a great conversation about mobile mapping and data collection – taking in drop-risk among other things. Once more, the ability for Mappt Air to manage workers in the field was a significant talking point.

south32 south32-sign

 

Thanks to all who took the time out of their day to host us!

Back at base, the evenings were full of presentations, whiteboards and highlighters. And of course, group dinners and drone flying sessions to unwind with the rest of the team.

Looking forward to the next opportunity to talk about Mappt with members of the geospatial community.

south-west-drone       south-west-dinner dunsboroughbeach

 

 

 

 

 

If you want to check out Mappt, you can download it from the Google Play store.

To learn more about Mappt Air, check out our website

And of course, reach out to us directly at sales@mappt.com.au