Posts

Mappt User Story: Researching primitive termite species in outback Australia

We caught up with Nicholas Hart at our offices in Perth this week. Nicholas was the 2017 winner of the “Takor Group prize for GIS” at the University of Western Australia.

Nicholas continued his studies at UWA in the School of Biological Sciences and recently submitted his thesis focusing on  primitive termite species in Australia.

Termites collected from a fallen tree

Termites collected from a fallen tree

We got the lowdown on the objectives of his thesis and how Mappt helped with the extensive field work involved in his research.

Mappt: G’day Nick. So tell us a bit about what you have been doing this past year….

After completing my degree in 2017, I decided to stay at UWA to pursue an Honours degree. The subject that I chose for my thesis was “Population and Landscape Genetics of a Primitive Termite Species” which was something my tutor had some experience with from research he had done decades ago so there was existing data on a broad and fine scale. The goal of my study was to relate genetic patterns in termite populations to spatial patterns in the landscape. In an ancient land like Australia, the landscape is stable so there is a lot of time for genetic patterns to emerge between populations. Extensive field research in 3 disparate outback locations was required so that was another thing that attracted me to the subject.

What locations did you visit for research? I am picturing wide open barren plains – how do you locate a tiny creature like a termite in such a vast landscape?

I spent time in the Pilbara region in Western Australia as well as areas around Darwin and Alice Springs in the Northern Territory. So yes – difficult places to find little insects but once you get used to the landscape and know what to look for, it actually becomes surprisingly easy to pick out the termite colonies – even at distance.

A screenshot from Mappt showing geotagged photos from study sites around Darwin in the Northern Territory, Australia

A screenshot from Mappt showing geotagged photos from study sites around Darwin in the Northern Territory, Australia

Why did you need to use GIS?

GIS was important as each data point has genetic information and it all had to be related to landscape features.

What type of landscape features are we talking about?

I needed to look at termite populations that were genetically distinct and see if there was a landscape feature separating the populations. Examples of landscape features are elevated areas which would have acted as refuges during ancient sea-level rises, big rivers with floodplains or even deep cracking clay soils.

So basically anything that would have separated one termite population from another for varying periods of time?

Correct. I found that the scale of the genetic patterns was related to the scale of the landscape variables that defined them.

Overview of some termite populations (yellow icons) separated by a landscape feature (in red)

Overview of some termite populations (yellow icons) separated by a landscape feature (in red)

Why did you need Mappt?

I needed something to assist with the collection of samples in the offline environment. I wanted something that would be an alternative to pen & paper, and swapping between a hand-held GPS and a digital camera. Mappt facilitated all of this in one device.

We often get asked about hardware so I’d be interested to hear what device were you using.

I used my HTC One Android smartphone.

So a pretty small screen then?

Yes but I found it usable for my purposes.

What Mappt features did you find most useful in the field?

I used the GPS tracking tool for orientation & navigation around the study sites. I created custom forms for collecting attribute data at each study site. I had some reference spatial data for some of the study sites which I loaded in to Mappt. I also captured a lot of spatial data – mostly as points – and took a lot of geotagged photos. Keeping a photographic record of the study site was important for investigating how the disturbance of the habitat affected the population and to relate the fine-level data collection with the broad-scale landscape features and thus identify populations for comparison. All the spatial data was exported to shapefile and I conducted analysis on the data using QGIS and R in the office.

A termite-infested tree in Western Australia

A termite-infested tree in Western Australia

Summing up then – would you recommend Mappt to others?

Yes definitely. For zoological and botanical field work, it is a definite advantage. There is less equipment and “stuff” to carry.  Everything is stored together – spatial points, geotagged photos, attributes, navigation & orientation – so there is less administration whilst at the study site. When it comes to planning, it is a definite time-saver and I also found it was easier to adapt with Mappt to changing conditions when in the field.

A custom data collection form template for the termite population study

A custom data collection form template for the termite population study

That’s great feedback. So what’s next for you?

Well I submitted my thesis this week. Yesterday, in fact. It’s been pretty hectic to get to this point so I am looking forward to a break. But there is plenty of potential for further work in this area so I am considering more academia in the future. But first a break.

Thank you for your time, Nick and all the best in the future.

by Ciaran Doyle

Mappt is a mobile GIS and data collection app for smartphones and tablets. It enables field operators to easily map and capture data offline in remote areas using their GPS-enabled tablet or mobile phone.

Try Mappt today by downloading it from the Google Play Store or Apple App Store

 

,

Ground-truthing Saltmarsh Vegetation Communities with Mappt. Lindisfarne Island, UK

lindisfarne_collage

Lindisfarne is a tidal island located off the north-east coast of England covering 405 hectares (1,000 acres). Whilst small, measuring 4 km in width 2.5 km in length, the island habitats consist of thriving saltmarshes, sand dunes, and tidal mudflats.  The island is known as a spectacular habitat for viewing migrating birds.

The coastal salt marshes of Lindisfarne formed when salt tolerant plants colonised the adjoining intertidal areas. The region’s high tidal variation has created an environment endemic to the islands unique range of flora and fauna.

How Mappt Assists Uni Students in the Field

Post-graduate research students enrolled in an International Marine Environmental Consultancy course provided by Newcastle University, UK, successfully used UAV imagery and Mappt to identify saltmarsh vegetation communities around Lindisfarne Island.

Students used stratified random sampling to collect ground truth data in order to train predictive mapping models for object-based image analysis of drone imagery. Students identified eight vegetation communities for predictive mapping.  Method “C” was found to have the most successful prediction rate.

Tidal plant communities on Lindisfarne island mapped using image-based object analysis of drone imagery

Tidal plant communities on Lindisfarne island mapped using image-based object analysis of drone imagery

Vegetation Communities Identified for this study

Code & Salt Marsh Plant Community Name

SM13 Puccinellia maritima
SM14 Halimione portulacoides
SM15 Juncus maritimus-Triglochin maritima
SM16 Festuca rubra
SM28 Elymus repens
SM6 Spartina anglica
SM8 Annual Salicornia

 

For this study, Mappt was connected to a Trimble Catalsyt GNSS (via bluetooth) to stake out quadrats, navigate to sampling areas, and store field data.  *Mounting your tablet to the GPS pole as was done for this study is advantageous as it frees up your hands for other important tasks.  We like how Paula took advantage of soft soils to ‘plant’ her GPS and tablet while referring to her comprehensive list of 864 unique National Vegetation Classification sub community names.

Using Mappt in conjunction with Trimble GNSS to map tidal plant communities

Using Mappt in conjunction with Trimble GNSS to map tidal plant communities

Student feedback was overwhelmingly positive and included the following;  

Uploading shapefiles was easy

Sampling points when overlain on drone imagery were easy to navigate to  

Sampling points could be made invisible after data had been collected

Students Share Their Excitement for Using Mappt

Students Share Their Excitement for Using Mappt

Students at the university of Newcastle plan to use Mappt for their future projects such as; sand dune monitoring, rocky shore habitat mapping, and measuring the impact of activities such as bait collection from the intertidal area. In this way, Mappt is helping university students to map and collect data on-the-go effectively.

 

Mappt is available for free to educational institutions.  Here’s how to become an educational partner with Mappt.  

,

1m Positional Accuracy in Mappt using Bad Elf GNSS Surveyor

Bad Elf GNSS Surveyor & Mappt Mobile GIS

Measuring 60x100mm the Bad Elf GNSS Surveyor can provide 1m accuracy

Measuring 60x100mm the Bad Elf GNSS Surveyor can provide 1m accuracy

Thanks to the helpful folks at Bad Elf, we recently got our hands on the Bad Elf Surveyor Bluetooth GNSS* for testing with Mappt. Combining Mappt with an external source of positional information delivers higher  accuracy than using the on-board GNSS for mobile phones and tablets. It also reduces battery consumption and CPU load on your mobile device.

Vendors like Bad Elf also provide applications offering enhanced functionality for data logging, device configuration, and data QC. Using external GNSS sources makes determining your position less “black box” and more hands-on when it comes to resolving your location and understanding the level of accuracy provided.
Compact and Compatible
Paring the Bad Elf GNSS with Mappt follows the same procedure we’ve detailed in a previous blog. The compact design (100x 60x20mm) and long lasting battery make the Bad Elf a handy field companion for mobile mapping and data collection. With a small LCD screen yielding important GNSS information, the Bad Elf keeps you well aware of the positional information available to you.

GNSS information available from the Bad Elf's compact 35x25mm LCD screen

GNSS information available from the Bad Elf’s compact 35x25mm LCD screen

Increased Accuracy
When either mapping or collecting data in the field, increased positional accuracy is always a plus. Often it’s necessary to revisit the field to account for seasonal changes (in the case of environmental sciences) or for relocating benchmarks or critical infrastructure such as utilities. The Bad Elf Surveyor offers up to 1m accuracy, an improvement over the 3-5m accuracy achievable with tablets and mobile phones.

 

How does it do that?
The Bad Elf Surveyor uses information from three satellite constellations; GPS, GLONASS, and QZSS. Thus from wherever you are globally, there’s an increased probability that you will have the required four satellites to resolve your position. Many devices derive location from a single satellite constellation thus limiting the amount of satellites available to them. The Bad Elf Surveyor also implements SBAS, Satellite Based Augmentation System, to gain positions within 1m. Serving as an augmentation to Global Navigation Satellite Systems, it works by collecting raw positioning data from regional Continuously Operating Reference Stations (CORS), computing error corrections, and sharing these corrections to users via a geostationary communications satellite. While southern hemisphere regions don’t have their own SBAS, Australia is currently implementing its own SBAS test-bed to be operational by January 2019.
Alongside SBAS, the Bad Elf Surveyor also implements PPP, Precise Point Positioning, which removes GNSS system errors providing a high level of position accuracy from a single receiver. This solution depends on GNSS satellite clock and orbit corrections. These corrections are delivered to the receiver via satellite to provide positioning accurate to within several deicmetres.

 

Mobile Device GPS Behavior Versus Dedicated GPS Units
Mobile device GNSS chipsets have been designed to compliment an integrated system (your tablet/phone) delivering a wide variety of applications. Just count the number of apps you’ve downloaded from the app store. Can you imagine carrying a separate component for each of these?  These mobile applications are optimized to reduce load on the system by reducing battery consumption and processor load. The optimisation for mobile GPS chipsets puts limiting battery usage at the top of the list with time-to-fix location second and positional accuracy third. Dedicated GNSS devices like Bad Elf devices flip this priority on it’s head, placing positional accuracy first followed by time-to-fix and lastly the reduction of battery power. While it may seem like the Bad Elf would quickly run out of juice, it can continuously stream Bluetooth GNSS information for 24 hours. We have yet to see a tablet with that type of battery power!

We took the Bad Elf GNSS Surveyor to our favourite bushland, Signal Hill Park

We took the Bad Elf GNSS Surveyor to our favourite bushland, Signal Hill Park

Mapping Tips n Tricks Learned Using the Bad Elf Surveyor
Creating Polygons in Mappt –  Turn on the enter polygon tool and record each significant point of the polygon (corners and inflection points) as you walk out the perimiter. This ensures that corners/vertices are not shortcut and an accurate shape of the area is recorded.  It’s possible to create polygons in Mappt using the GPS Tracking tool, then walking out the perimeter of the polygon, and finishing off by converting the polyline to a polygon to enclose the area. This method helps when moving continuously (such as when in a vehicle) as you don’t need to stop and record points around the area. However the points associated with your polyline are created at the frequency of GPS updates from your device and you may end up not recording those key corner points!
GNSS Location – Place your external GNSS device in a way that provides a clear view of the sky. Some websites suggest affixing the GNSS face-up to the top of your hat! While you will have great reception, this limits the opportunity to check parameters on the LCD screen. Affixing the GNSS to a surveyors staff gives you both a walking stick and place to mount your tablet. This setup affords both good GNSS reception and makes data entry easier as the tablet is held steady by the staff.  Note:  The team at Bad Elf are currently developing hardware designed with rapid mobile mapping in mind.

The crew at Bad Elf are working on a clever monopole mount for the Bad Elf Surveyor

The crew at Bad Elf are working on a clever monopole mount for the Bad Elf Surveyor

Bad Elf has developed an integrated GPS and mobile device monopole for rapid mobile mapping

Bad Elf has developed an integrated GPS and mobile device monopole for rapid mobile mapping

Bad Elf GNSS Logging – The Bad Elf allows continuous logging of points. After a hard day in the field, it’s nice to know how much ground you covered. Logged information can be downloaded as GPX files and visualised in desktop GIS solutions such as QGIS.

Signal Hill Park Map from QGIS. Bad Elf track points (orange) displaying the total ground covered in this mapping exercise.

Signal Hill Park Map from QGIS. Bad Elf track points (orange) displaying the total ground covered in this mapping exercise.

*GNSS, Global Navigation Satellite System, is the collective term for all navigation satellites groups (constellations) including GPS.

 

If you would like to know more about configuring an external GNSS to work with Mappt, please contacts us at: support@mappt.com.au

, ,

It’s time to upgrade!

Mappt version 3.10.1 is available on Google Play.

mappt-3-10-1-mobile-gis-and-data-collection

Dear Mappt Community,
Version 3.10.1 has hit the Google Play store & it includes some important updates so make sure to update Mappt on your device before August 30, 2018 to ensure continuity of your field data collection activities.

Mappt on Google Play

Thanks for being part of the Mappt Community!
As always we’re keen to hear from you!
Kind Regards,
Ciaran Doyle

Product Manager
Takor Group Ltd

,

Mappt User Story: Building Market Linkages for Smallholder Farmers in Uganda

Innovations for Poverty Action (IPA) is a research and policy nonprofit that discovers and promotes effective solutions to global poverty problems. IPA brings together researchers and decision-makers to design, rigorously evaluate, and refine these solutions and their applications, ensuring that the evidence created is used to improve the lives of the world’s poor.

enumerator

A project enumerator collects data from a respondent using Mappt on a Samsung-SM231 in a rural village in Uganda

Laza Razafimbelo is a research associate at IPA in Uganda. He works on the “Market Linkages for Smallhold Farmers in Uganda” project. Prices of staple foods like maize, beans, and rice vary substantially in Sub-Saharan Africa, depending on the season, country, and region. Addressing the imbalance in food supply and increasing farmer income may require a multi-pronged approach that tackles multiple barriers at once. The project is evaluating the impact of contract farming services and a mobile technology-enhanced trader alerts system on food markets across Uganda.

Why did you need to use a  Geographic Information System (GIS) in the project?

Laza: In planning the project, it was decided that a Geographic Information System (GIS) was required for 2 reasons;

  1. As a management tool, we needed to use it to keep track of the data collection process.
  2. As part of the project, we wanted to map the road to our study areas and collect information along the route.

Why did you need Mappt?

Laza: Mappt is the best road mapping app we could find on the market after testing several. It has a great support and sales team. One may be tempted to use the bunch of free apps on the market, but this made the difference and the quality of data from Mappt is incomparable to other applications.

What problems were occurring before Mappt?

Laza: Internet coverage is a big problem. The internet is not always guaranteed since we mainly work in the rural area of Uganda. We  found that paper materials were messy and inaccurate. We tried to collect some of the data (travel time, etc)  manually, but the data was inconsistent due to the inaccuracy.

How did you use Mappt?

Laza: We were using Mappt to help us to add the transport cost into our analysis. With Mappt, we were mapping the main commercial routes of our study areas. With the same tool, we also collected other data such as road quality type, travel time, etc. We subscribed to 9 licenses for a period of 2 months and we managed to collect all the different data that we wanted using only one tool – Mappt.

Why did you choose Mappt over other software?

Laza: We chose Mappt for a number of reasons – cost efficient, ability to work offline, brilliant attribute features and vector layers, good GPS coordination system and great support and sales team.

So how did the project turn out?

Laza: We are done with the data collection and will start the analysis.

What was the most valuable thing about Mappt?

Laza: Reliable tool (never got a bug), great support and sales team.

Final question – would you recommend Mappt to others? Why?

Laza: We highly recommended Mappt for any mobile GIS work for its reliability and the great team behind it. We have tried a lot of other apps but Mappt is way better.

mangotree

Collecting field data using Mappt under the shade of a mango tree in rural Uganda

 

Try Mappt today by downloading it from the Google Play Store

 

,

External GPS sources for Mappt. Part 1: Configuration

gis_manAre you looking to improve your positional accuracy in Mappt?  

Connecting to an external Bluetooth GPS can help!

We’re often asked about improving the positional accuracy information used by Mappt.  As you may know, Mappt uses the onboard GPS from your mobile phone/tablet.  While the on-board GPS accuracy may be sufficient for some types of mapping, others require higher accuracy.  To achieve this Mappt can utilise an external Bluetooth GPS feed.  GPS devices capable of streaming positional information via Bluetooth in the NMEA format are suitable for Mappt.

As phones and tablets are designed to utilise their own integral GPS hardware, Mappt users will need to utilise a third-party application to incorporate an external Bluetooth GPS feed.  These external Bluetooth GPS streams serve to oreplace the internal GPS service to thus provide higher positional accuracy.  Android refers to these apps as Mock Location Providers since app developers often need a GPS feed for coding and testing.  One Bluetooth streaming app compatible with Mappt is Bluetooth GPS (on Google Play).

bluetooth-gps

Bluetooth GPS is available on the Google Play Store

After installing Bluetooth GPS it’s necessary to enable Developer Options, accessed via the Settings on your device.  Developer Options can be enabled by first finding the Build Number (for our device* it’s under Settings-About Tablet-Software Information) and tapping Build Number seven times.  A notification will appear to inform you that Developer Options have been enabled.  Afterwards in Developer Options (Settings-Developer Options-Debugging), users need to select Bluetooth GPS as the Mock Location Provider.

Link to Youtube Video: Settings to Enable Bluetooth

Settings to Enable Bluetooth GPS for Mappt

Then connect to the external device via Bluetooth and start Bluetooth GPS on the tablet.  From the Select Paired GPS device and connect list, choose the device and tap CONNECT.  The screen will be updated with new location parameters.  You’re now receiving location information via Bluetooth! Check out this video showing how to enable an external Bluetooth GPS for Mappt

* The configuration can vary depending on your tablet or phone.

 

 

 

,

How Mobile GIS is Revolutionising Forest Inventories

Protecting the hills, regulating streams, providing habitat for fauna, and producing that little thing called oxygen are all on a forest’s to-do list.

It’s tough being a forest and these jobs are just the tip of the iceberg, so how can we help them out and ensure they thrive?

Comprehensive forest management and sustainability largely depends on the quantity and quality of information available. This information or data is obtained from forest inventories.

Recent advancements in technology have already begun to improve the accuracy and efficiency of forest inventories, with the impact of emerging geospatial technologies still being realised.

Geographic Information Systems (GIS) are location-based tools that aid in the collection, analysis and visualisation of accurate data. Visualising this kind of tree data enables key stakeholders in the forestry industry to make informed decisions.

Forest managers, regional planners, arborists and conservation biologists need forest data to create actionable intelligence on the health and state of the trees.

With drastic developments in mobile phones over recent years, data collection, field mapping and mobile GIS have meant creating forest inventories has never been easier.

Below are several features some mobile mapping GIS and data collection tools have that can help revolutionise forest inventories.

Offline GPS Tracking

Offline GPS tracking is perfect for recording the exact movements of field workers. The offline component enables the device to be used in any remote location without internet access.

Mappt™ is a mobile GIS and data collection app, built for field workers that need to create, edit, store and share geospatial data. Mappt’s offline GPS calculates distances, helps workers to find targeted areas faster and provides evidence of the ground that has been covered. The offline GPS tool can be switched on and will work in the background while you get on with the rest of your data collection.

compact

Drop Down Forms and Points, Lines and Polygons

The digital revolution is in full swing and the need for paper is diminishing. Environmental workers now have the power to use devices such as tablets or even phones to easily take notes on specific points, draw lines and view this all this information visually on a digital map.

Mappt enables users to create detailed descriptions in customisable ‘drop down’ forms. Field workers can enter detailed or simple options on aspects such as tree diameter, height, observations, conditions, eco-zones, political or property boundaries, species, population, and any other characteristics.

Once these forms are created, the user simply selects the correct answer from the list as opposed to typing it in each time. These forms save time, reduces repetition and can cut down human error.
Mappt splitting tool

Geofencing

When conducting a forest inventory, serious consideration of boundaries and borders is needed to ensure data is accurately represented in each respective area. Mappt has a ‘geofencing’ tool which allows users to mark out areas that field workers should not disturb, such as wildlife habitats, heritage land or sensitive sites. It can also be used to simply mark out the area you should be working in to assess a specific rehabilitation zone.

If a boundary is breached, an alarm will sound and an alert will display to stop workers in their tracks. Mappt will also log the event according to date, time and distance.

GET MY FREE MAPPT TRIAL

geofence

Geotagged Photos and Map Annotation

Mappt enables field workers to take geotagged photos using the device the app is running on. This photo is then saved and geotagged on the map to the exact spot it was taken in.

Users then have the option to annotate the photo in-app for further data clarification. Using a pen tool, filed workers can draw on an image to (for example) circle areas of unfamiliarity or highlight where a sample was taken from. Users can also add shapes and text to the map itself both in satellite view and street view to highlight physical characteristics of the forest or draw attention to damaged forest areas.

Mappt annotations

 

The Future is Mobile

Mobile phones, tablets and handheld devices now have the capability of full sized desktop computers. Bolting a GIS onto your mobile device makes them an invaluable and powerful tool for undertaking forest inventories or any other kind of field work and data collection.

Due to the sudden advances in these technologies, many businesses operating within environmental and forestry industries are falling behind as they’re not realizing the potential savings these technologies can provide. Time is money and without the use of applications such as Mappt, the forestry industry is at risk of becoming an inflated production.

GIS field data collection software make creating forest inventories fast, smooth and simple. Some of Mappt’s other features include; importing and exporting various kinds of geospatial data; thematic mapping; cached Google Maps; and WMS and WFS feed capabilities.

GET MY FREE MAPPT TRIAL

 

Ssiobhan-profile2iobhan Herne
Marketing and Communications

Siobhan has no background in GIS, she’s a beginner, just like you. Follow her stories for an easier digest of all things geospatial.

Mappt’s First Mini Conference in Perth

Two weeks ago we celebrated Earth Science Week by holding our first mini conference in our hometown, Perth!

We teamed up with tech giant Panasonic to “Unlock the Power of Mobile Data Collection”, and show how industry leaders are completing their field work and making discoveries that would have been tedious or near impossible without today’s technologies.

Our guests gathered at the brand new Ambrose Estate venue for a morning of insightful presentations, amazing door prizes, morning tea and the chance to network with professionals from a variety of industries.

The Presenters

Paul Barber, Director of ArborCarbon  – “Urban Forest Monitoring: Improving Sustainable Forest Management”

Paul Barber is a Forest Pathologist & Environmental Consultant with over 20 years’ experience in vegetation diagnosis, monitoring and management.

mappt-event-paul-barber

Chris Devlin, Director of iSpatial Solutions – “From Field to Office: Integrating Efficient Asset Management and Reporting”

Chris Devlin has 22 years’ experience in the resources and earth sciences sector and helps organisations to define, develop and implement GIS focused solutions.

mappt-event-chris-ispatial

Adrian Young, Product Manager at Spookfish – “Capturing Field Data with a Mobile Eye in the Sky”

After a decade of using geospatial technology to help state and federal government, Adrian has spent the past 10 years working with startups, enterprises and governments to take innovative geospatial technologies to market.

mappt-event-adrian-spookfish

 

Sean Mirzadeh, Panasonic Business Development Manager (WA) – “Panasonic: The Global Leader in Rugged IT”

With 10 years’ experience in sales engineering, business development and client relationship management, Sean is currently working on some of the major mobility projects for mining and oil and gas in WA.

mappt-event-sean-panasonic

If you couldn’t make it, stay tuned as we’ll be uploading our speakers’ presentations to our YouTube channel.

After the presentations, we drew the prizes. One lucky guest walked away with an annual Mappt Standard licence, and the other a Panasonic LUMIX DMC-FT30 camera!

We then made our way to the balcony where we networked under the glorious Perth sun and enjoyed a delicious pastry… or four.

mappt-event-balcony

mappt-event-ambrose-estate-perth

Huge thanks to our speakers and everyone who made it; you guys rock!

To hear about future events, sign up to our newsletter or follow us on Facebook and LinkedIn. See you next time!